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ABSTRACT

Networked structures have shown good capabilities for filtering non gaussian processes.
Based on this approach, in the present paper the Multi-Layer Perceptron (MLP) neural network
model is used for adaptive non linear filtering. The resulting structures have the advantage that
they are able to learn the representation by axamples, which is of great benefit when the nature
of the process is unknown or is difficult to characterize.

The purpose of this paper is to analyse the possibility of using the MLP neural network
for the processing of the Evoked Potentials (EP). In this case the process can be conceived as
deterministic low amplitude signal (damped sine waves), corresponding to the brain response to
stimuli, embedded in strongly coloured noise, the EEG background activity. Typical values of
the signal-to-noise ratio are less than 0dB.

The network, used as a non-linear filter, is trained using iteratively as input signal one of
a set of available EP ensembles and as target signal another ensemble of the same set.
Experimental results, both on synthetic and real data, show that the proposed method provides
good results with very few EP ensembles. Therefore it allows to noteworthy reduce the signal
non-stationarity and the patient's annoyance.

INTRODUCTION

A variety of approaches to adaptive waveform estimation have been developed in various
disciplines. The linear adaptive systems such as the Adaptive Linear Combiner (ALC) and the
Kalman filter have actracted the interest of many researchers because of their favourable
properties. However, their use is limited to applications for which linear descriptions are
appropriate. This assumption can be too restrictive in many cases where the process cannot be
considered linear.

The recent resurgence of research activity in neural networks has shown the actractive
properties of these systems for nonlinear processing. Moreover, the neural network can be
considered a promising metaphor for the structure suggested by Palmieri and Boncelet [1] for
nonlinear adaptive filtering, where an intermediate mapping function is introduced after a delay
line and before a linear combiner, in order to try to linearize the input signal. The neural
network approach has the further advantage that it can learn the representation of the process
also when the nature of the nonlinearity is difficult to characterize, or is unknown.

This work has been supported in part by Consiglio Nazionale delle Ricerche of Italy and in part by
Ministero della Pubblica Istruzione of Italy.
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Fig.1 The MLP with a single linear output Fig.2 Scheme of the proposed adaptive
node. architecture for EP processing.

In order to evaluate the performance of the proposed technique a set of synthetic EP
signals were generated. These signals consist of one cycle of a sine wave followed by a half
cycle of attenuated sine wave added to various uncorrelated noise realizations [7]. The noise
samples were generated by filtering sequences of random numbers with uniform distribution
through the following 11-point smoothing filter:

Y = (-36%,.5 + 94 + 44xp 3 + 69%, o + 84x, | + 89x) + 8dxp,; + 69X, .9
+44x 3+ 9x) 4" 36x,,,5) / 429.
Each obtained ensemble consists of 96 samples (Fig. 3a, dashed line). The SNR, defined

as the ratio Signal Power / Noise Variance, was assumed equal to -6 dB. The following
parameters of the neural network were chosen for the experiment:

units in the input layer: =10;

units in the hidden layer: =6;
samples processed in the learning phase : = 576,000;
learning rate constant : =0.01;
momentum constant : =0;

sigmoid:  f(x) = Gain * [2/ (1+exp(-x * Slope) - 1]. Gain=2; Slope = %;

Fig. 3a shows the filtered signal (solid line) compared with the true synthetic EP (dotted
line) and Fig. 3b shows the filtered signal, averaged on 12 ensembles, compared to the signal
obtained by simply averaging the input signals on the same number of ensembles.

To quantify the performance of the network, the mean of the MSEs over each available
ensemble was calculated after the learning phase (Fig. 4). Moreover the after training output
ensembles were averaged and the corresponding MSE was compared with those obtained by
the averaging technique (Fig. 5). The proposed method provides good results with very few EP
ensembles and without the necessity of a-priori knowledge of the signal characteristics.
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The purpose of this paper is to analyse the possibility of using the MLP neural network
[2] for the processing of the electrical responses of the brain to stimuli or Evoked Potentials
(EP).

EP can be conceived as deterministic low amplitude signals embedded in coloured noise,
the EEG background activity, which has temporal and spectral characteristics similar to the EP
waveforms.This fact increases the difficulty of detecting and estimating the parameters of the
EP themselves. Typical values of the signal-to-noise ratio are less than 0dB.

This characteristic of the process requires to repeatedly stimulate the subjects and to
improve the low SNR by averaging a large number of trials in order to extract the response of
interest. The average is a special kind of filter, the so-called "comb" filter which improves the

signal to noise ratio between EP and EEG background activity by the factor VM, where M is
the number of averaged trials (ensembles). A crucial assumption implicit with averaging is:

1) EEG background activity, as a stochastic signal, and EP are uncorrelated and
additive. This means for the single ensemble s(t) with noise EEG n(t) and EP x(t)
that:

s(t) = n(t) + x(t),
E[ n(t;) x(tp) ] = E[ n(t;) ] E[ x(tp) ] = 0, because E[ n(t) ] = 0.
2) The EP is stationary in phase, form, latency and amplitude.

The validity of hypothesis 2) is rarely verified when M increases. Since normally many
averages are required and the troubles for the patient have to be minimized, many powerful
signal processing techniques have been employed [3,4] in order to rapidly improve the SNR
reducing the number of trials. Alternative approaches, based on minimization of the Mean-
Square-Error (MSE) between the signal and the output of a filter, have recently been developed.
In particular, the use of Wiener filtering [5] and optimal filters derived taking into account the
nonstationarity of signal and noise [6] have been proposed. Both these methods require
extensive complex calculations of covariance or correlation matrices, which presupposes
knowledge of signal characteristics (such as power spectra) of a large number of tests.

In this paper a nonlinear adaptive processing technique using a MLP is proposed for
processing the brain EEG evoked potentials. Experiments are performed on both synthetic and
real signals.

THE MLP FILTER

The proposed MLP architecture is characterized by linear input nodes, sigmoidal hidden
nodes and a single linear output node (Fig. 1). The linear output layer operates as a linear
combiner and allows to circumvent dynamic range limitations. This structure can be viewed
also as the cascade of a nonlinear mapping and a linear combiner.

The learning of the MLP is obtained by the Back-Propagation Algorithm (BPA) [2]. The
proposed adaptive processing scheme is shown in Fig. 2. The processing is carried out in the
following way. The input signal is one of a set of stimulated responses of a subject and the
target signal is another response of the same set. The network is trained by iteratively
presenting the EP ensembles of the available set. Each ensemble consists of N samples which
are successively fed into the network through a sliding window wide as the number of input
nodes. No average is required before the processing. After the training phase the output signal
is a filtered version of the available EP ensemble. Averaging very few output ensembles
improves dramatically the quality of the EP estimation.
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Fig.3

a) An ensemble of the measured EP (dashed line) compared to the filtered EP (solid
line) and the true synthetic EP (dotted line);

b) the averaged filtered signal (solid line) compared to the signal obtained by the
simple average method (dashed line) and true synthetic EP (dotted line).

In Fig. 6. a comparison between the proposed NN filter and an adaptive linear combiner
with no hidden units is reported.

Another experiment on real evoked potentials was made using a neural network equal to
that used with the synthetic data. A set of four evoked potentials of 96 samples (sampling
frequency = 64 Hz) was used. The evoked potentials were obtained by a "simple reaction time"
(SRT)-experiment, where the probands have to push a button as fast as possible at every
appearance of a 2.54 cm? quadratic flash. The stimuli onset are presented in a room with
reduced luminosity for 54 ms in the center of the proband's visual field. They appear at regular
intervals of 4 seconds.

The results are reported in Fig. 7, where the effectiveness of the filtering procedure on

each single EP is proved by filtering the EP's through respectively a 10-6-1 NN and a 10-10-
10-6-1 NN.
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Fig. 4 Mean MSE obtained averaging over various ensembles.
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Fig. 5 MSE obtained after averaging over various ensembles.
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Fig. 6 Comparison between the proposed NN filter and the adaptive linear
combiner (MSE computed as in Fig. 5).
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Fig. 7
a) Five EPs and the corresponding average (in the lowest box);
b) the same EPs filtered by a 10-6-1 NN;
c) the same EPs filtered by a 10-10-10-6-1 NN.
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