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ABSTRACT

The plasticity of brain, i. e. the capability of changing neural connections over time, is an extensively
studied phenomenon. Recently, it has been proposed that the network changes not only the synaptic strengths of
connection but also partially its internal topology, according to either the received external stimuli and the pre-
existent connection layout. We have found that this idea can be applied also to simple artificial neural networks. In
the paper a new method is presented to dynamically adapt the topology of a neural network using only the
information of the learning set. The method, although simply eliminates connections from an initial fully
connected network, presents characteristics which can resemble some biological behaviour.

INTRODUCTION

It is well known that Artificial Neural Networks can solve a large variety of problems. In order to reach this
goal, usually a formal model for the neuron is chosen and used to build a network with a given topology. Then
this network is trained, adapting the synaptic weights of every neuron, by using a suitable learning algorithm.

The network topologies which are extensively used, are chosen among a set of known fixed models that are
characterized by the presence of dense connection matrices among all neurons (fully connected network) or
among groups of neurons, as in the well known Multi Layer Perceptron (MLP) [1]. These topologies however
are very different from those found in biological neural systems, where the networks are often much less regular.
Moreover, since usually a particular problem can be optimally solved by a network with a non-regular connection
topology, the task of transforming an oversized regularly connected network into such optimal non-regular
network is completely committed to the learning algorithm. Most of known learning algorithms, however, are not
able to produce a reduced topology by zeroing some synaptic weights, instead they typically produce different
structures spreading nonvanishing weights all over the network. The efficiency can result poor and several
dimensions of a chosen configuration must be tried to yield an acceptable solution. In fact, if the network is too
small, the input-output mapping cannot be learned with satisfactory accuracy. Conversely, if the network is too
large, after a long training phase it will learn the given set correctly, but will badly generalize due to learning data
overfitting [2,3]. Therefore, the goal when training a network is to find a topology large enough to learn the
mapping and as small as possible to generalize correctly.

Two possible approach to produce networks with correct topologies have been proposed:

1) start with a small network and grow additional synapses and/or neurons until the desired behaviour is reached,;
2) start with a large network and prune off synapses and/or neurons until the desired behaviour is mantained.

The first approach, although it could be efficient since most of the job is performed on networks of small
size, can be difficult to realize and control in order to reach network topologies which are "optimal” in some
senses. In [4] a single, non-optimal procedure to add neurons to a MLP is reported.

The second approach is much more studied and consists of finding a subset of network synaptic weights
that, when set to zero, lead to the smallest increase of an error measure at the output. Several methods has been
proposed in the last years in particular for the MLP. In [5] an entire neuron is pruned off if it does not change
state or replicates another neuron after the presentation of the entire training data. The idea of weight decay is
experimented in [6], where the synaptic weights with low influence on the output error during learning are pruned
off. A sensitivity measure of the error function to the elimination of a unit or a synaptic weight is proposed in
[7,8], and a-posteriori used to reduce the size of the network. A similar pruning procedure, based on the second
derivative information, is reported in [9]. The proposed methods can be slow, requiring periodic retraining of the
network, and often require a "supervisor”, a non-local algorithm which performs to pruning task. Moreover,
some of them can require a difficult fine-tuning of the pruning coefficients in order to work correctly.

Therefore it is highly desiderable to find new methods which are able to dynamically adapt the network
topology to the problem. In this paper, using some observations on the biological network plasticity, an idea is
introduced to develop a procedure for varying the network topology by simply pruning off connections in an
initial overdimensioned fully connected network.
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NEURAL PLASTICITY

The plasticity of brain, i. e. the capability of changing neural connections over time, is an extensively
studied phenomenon. In this field the work of Hubel and Wiesel on measuring changes in the ocular dominance
statistics of a large neuron sample of the visual cortex in mammalians (particularly cat and monkey) are a
fundamental milestone. They found that monocular deprivation drivers most neurons of the cortex to prefer the
open eye, provided that the animal is still sufficiently young [10]. In particular it is now clear that the plasticity
varies over the course of ontogenetic development and reaches a sharp maximum during the so-called critical
period, during which a strong change of the brain structure is driven by external environmental stimuli.

Recently [11], it has been proposed that, during the critical period, the network changes not only the
synaptic strengths of connection but also partially its internal topology. These changes are driven by either the
received external stimuli and the pre-existent connection layout.

We have found that this idea can be applied also to simple artificial neural networks. By using only the
external stimuli (i. e. input and output patterns) and the knowledge of the synaptic weights it is possible to adapt
the network to the problem, changing concurrently the network synapses and the connection topology.

A simple procedure to prune off connection from a fully connected network is presented here. No new
connections are created, although a similar approach could be followed to derive a procedure to add synapses to
the network. In particular a neural network is considered in which there are input, hidden and output neurons and
where all possible connections among these units are allowed, specifically including recursive connections and
self- feedback connections. The algorithm for training the recursive network is derived in [12,13], where the
authors have shown that the error signal as defined by the generalized delta rule, when calculated on the basis of
the equilibrium state of the recursive network and then applied at the output of the network and allowed to
backpropagate recursively, provides the proper final error signal at each unit for correcting the weights in a
gradient descend sense. These fully interconnected networks are found to have often a greater learning capacity
and better error characteristics than the corresponding feedforward networks.

In order to verify if a particular connection is necessary or not to solve a particular problem, a measure of
the importance of the connection is necessary. According to the biological behaviour, this measure must be
proportional either to the external stimuli and to pre-existent synaptic strength. A very simple formula can be
derived by defining the following quantity:

- the synaptic activity of the connection from the i-th neuron to the j-th neuron relative to the p-th training pattern

where Wij is the synaptic weight of the connection between the i-th and j-th neurons, and Act:(P) is the activation
of the j-th neuron corresponding to the p-th input pattern. This activity can be averaged on the whole training set
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where N is the number of the input training patterns. Since each neuron is driven by several different synapses,
an average total synaptic activity relative to the i-th neuron can be defined
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where N; is the total number of inputs to the i-th neuron. A measure of importance of the synapsis can be obtained
by comparing its averaged activity with respect to the the total average activity relative to the neuron which the

synapsis belongs to. Therefore the Percentage Average Synaptic Activity (PASA) can be defined as follows
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During the learning phase the previous quantities vary until they reach stable values. The idea, used for
changing the network topology, consists in dynamically eliminating all the connections which present a PASA
lower than a threshold value varying according to a predefined curve.

In the forward step of the learning phase, in each neuron the synaptic activity of every connection relative to
the current training pattern, is computed and accumulated. At the end of the training set all the PASA's can be
computed. These values are compared with a threshold Th(p) which is a function of the epochs in a way
depending on the particular problem. The connections with a PASA lower than the threshold value are pruned off.

Tt can be noted that this algorithm is local in the sense that each neuron requires only local quantities to
compute the PASA's. Moreover, the computational cost is low, since:

- the calculation of the synaptic activity per training pattern requires one multiplication/accumulation operation
per synapsis (the multiplication can be avoided by using the absolute value instead of the square value in (1);

- the calculation of the PASA's of each connection relative to the i-th neuron at the end of one training set
requires (Nj-1) sums, one division and one multiplication per synapsis.

PRELIMINARY EXPERIMENTAL RESULTS
The proposed algorithm has been tested on several simple applications. In particular the experimental results
relative to the XOR and the binary 2x2 bits multiplication problems are reported.

XOR:
The initial fully connected network was composed of 3 neurons with a total of 18 parameters (weights of
the connections and offsets). The PASA's has been further averaged on 10 epochs in the learning phase. The
threshold Th(p) varied as shown in Fig. 1a., while the learning rate was varied from 2 to 5.
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Fig. 1 (a) Threshold function Th(p) used in the XOR experiment. If the PASA of a connection is lower than the

threshold at the p-th epoch, the connection is eliminated. (b) Network topology obtained in the most of the cases
of the XOR problem. The lower left neuron is useless since it has no output connections.

Several trials were carried out using different initial sets of weights and offsets. In the most of the cases
(about 70%) the topology in Fig. 1b was obtained. Between the two left neurons a winner is established (the
upper one) and the other results to have no output connections, therefore the canonical 2 neuron topology was
reached. In the remaining cases, the algorithm obtains feedforward networks by eliminating the connections
between the two hidden neuron and the feedbacks between the output neuron and these neurons.

BINARY MULTIPLICATION:

The initial fully connected network used in this case was composed of 5 neurons with a total 50 parameters.
The PASA's have been further averaged on 10 epochs during the learning phase. Several trials were carried out
using different initial sets of weights and offsets and various threshold curves have been tested for pruning off.
Good results, in terms of convergence rate and pruning capability, have been obtained by using the curve in Fig.
2 which closely resembles the critical period of the biological neural networks. The proposed algorithm is able to
eliminate up to 40% of the number of synapses depending on the initial sets of weights and offsets and the
learning phase converges in the large majority of the cases.
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Fig. 2 Threshold function Th(p)
157 used in the binary multiplication
experiment. Note the resemblance
with the biological "critical period".
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Two sets of experiments were carried out after the proposed algorithm had reduced the original network by
pruning off several connections. In the first the obtained topology was tested by performing a new learning phase
on pruned networks loaded with small random set of weights and offsets. The performance of these networks
were at least as good as those of the original fully connected network and often they worked better. On the
contrary, in the second set of experiments several networks were built from the initial fully connected network by
pruning off the same number of connections eliminated by the proposed algorithm but at random positions. These
networks, during the learning phase, gave very poor results, often they did not converge at all, with respect to the
equivalent network obtained by the proposed algorithm.

It is possible also to iterate the algorithm, by using an already pruned network as initial network, to further
reduce the number of synaptic connections. Using this technique, we have obtained a network with 28 parameters
which contains 8 parameters less than the canonical 4 neuron network used to solve the 2 bit muitiplication
problem.

CONCLUSIONS

In the paper a new method has been presented to dynamically adapt the topology of the neural network
using only the information of the learning set. The method, although simply eliminates connections from an initial
fully connected network without creating new synapses, presents characteristics which can resemble some
biological behaviours like the so-called critical period. The future work is addressed to obtain a deeper
understanding of the algorithm, also in terms of optimality, robustness and generalization capability. An
application to a real-world problem will show better the performance of the method with respect to other pruning
approaches. Finally, we want to extend the same approach also to the creation of new synapses.
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