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ABSTRACT

The aim of this work is to study an extended multilayer perceptron made of neurons with an adaptive
polynomial actdvation function. The adaptive polynomial neural network (APNN) gives a reduction in terms of
dimensions and computational complexity both in learning and in forward phase compared with traditional MLPs
with a sigmoidal activaton function. Many experiments have been extensively carried out both on pattern
recognition and data processing problems. The relationship of the APNNs with the Volterra expansion is also
discussed.

INTRODUCTION

In the last years, the artificial neural networks have been successfully applied to the solution of many real
problems. Most of applications can be roughly grouped into two major categories: pattern recognition and data
processing. The main scope of the first group of applications is to classify patterns by learning from examples, i.e.
determine pattern statistics from a set of pattern samples. On the other hand, the main scope of the second group of
applications is to process input data to obtain new modified output data, i.e. realise a proper rule (function) by which
an input vector is transformed into an output vector. In both kinds of applications, the structural and computation
complexity of the involved networks is one of the major hindrance to a broad spreading of the neural techniques.

Afirst way toreduce the complexity of the traditional approaches, as those based on the widely used Multilayer
Perceptron (MLP) with the Back-Propagation (BP) learning algorithm [1], is to introduce different and powerful
neural paradigms, as the well known polynomial networks [2], [3]. For classification purposes, the polynomial
Adaline or Padaline [2] is a well established technique. As shown in [3], the polynomial Adaline can be trained to
realize an approximate Taylor’s series expansion of the Bayesian discriminant function, thereby implementing the
optimum Bayes classifier. However, a suboptimal classifier can also be implemented training the Padaline to
minimize the output mean square error with LMS algorithms, providing that enough sample points are available
during learning. The particular structure of the polynomial Adaline has also a strict relationship with the Volterra
series expansion [4] of a non-linear functional. For data processing purpose, in fact, it can be successfully employed
to implemert approximate realization of non-linear systems with memory. In this case, the Padaline is therefore
characterised by a system order, i.e. the polynomial degree, and a memory, both tied to the number of the Volterra
kernels associated with the truncated series. A typical application of such a network, the adaptive equalization of
acommunication channel, is reported in [5]. The polynomial networks, however, suffer of some limitations. The
major drawback is the number of their coefficients which increases exponentially with the order and the memory
of the truncated Volterra series. Moreover the correct order and memory of the network for a given set of data are
unknown and must be inferred by expericnce, usdally overestimating them with a huge increase of complexity and
computational costs.

A second way to reduce the complexity of the traditional approaches is to design particular implementations
of common neural networks which greatly decrease the computational burden. A good examplc is reported in [6],
(7], where the complexity of a digital MLP implementation is reduced by constraining the synaptic weights to be
simple powers of two. In this case, as in many other cases of digital realization of neural networks, the activation
function of the neurons is implemented by the use of a look-up table. Thus it could be feasible to choose suitable
(in general more complex) activation functions which allow to solve a given problem with a smaller network, hence
reducing the complexity and the implementation costs. Extensive studies have been carried out on the capabilities
and behaviours of the neuron activation functions in a MLP environment [see for example 8].

In this paper, a new neural network structure is presented that has a low complexity and is particularly suitable
for digital hardware realization, especially in VLSI devices. The proposed structure is based on the “polynomial
neuron”, a classical additive neuron but with a polynomial activation function. Such a neuron is then used to build

- multilayer networks trainable with an algorithm very similar to the Back Propagation. These modified MLPs (with

polynomial neurons) do not exhibit more complexity in digital implementations than the classical MLPs, since the
activation functions are realized with look-up tables, nevertheless they are usually smaller in terms of layers and
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neurons per layer than the classical MLPs on a large class of problems. It can be shown that the proposed networks
are equivalent to Padalines in which some relationships exist among the polynomial coefficients; therefore they
implement a truncated and constrained Volterra series expansion.

In the following section a detailed description of the proposed structure and the learning algorithm will be
given, together with a demonstration of the relationship between this structure and the polynomial networks. In the
last section, some experimental results will be presented in order to show the performance of the proposed network
with respect to the traditional MLP. '

THE PROPOSED ARCHITECTURE

The scheme of the architecture proposed in this paper is presented in Fig. 1.
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Fig. 1. A processing unit of APNN.

In order to analyze the behavior of the proposed structure, let's examinate a single neuron with two inputsand .
a2 degree polynomial nonlinearity. The two inputs, X, and x,, multiplied by the respective weights, w, and W, and |
then summed together, become the argument of the nonlinearity, a quadratic polynomial with coefficients a,a and
a: 4 :
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we obtain the expression:

a0+ a1x1 + a2X2+ a3X1X2+ a4X%+ a5x%
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the coefficients of the Volterra expansion and the parameters of the network does not allow to obtain analyticallly
 the optimal A and W vectors. Anyway, experimental tests pointoutthatthe BP algorithm, even if it cannot guarantee
the optimal solution, converges to an adequate solution with an extremely reduced variance with respect to MLPs.
However, as stated in the introduction, APNNs exibit a remarkable save in terms of complexity, especially

when digital implementations are involved, requiring a considerably smaller number of connections, as it can be

seen from Fig. 2.
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Fig. 2. Number of synapses (connections) vs number of adaptive parameters.

LEARNING ALGORITHM

The proposed algorithm is an extension of the traditional Back-Propagation procedure. At each step, the
~ updating of both the synaptic weights and the coefficients of the polynomial activation function is performed,
. according to the rule:
W, =W, +AW,

A=A +AA,
* where W.and A, are respectively the weight vector and the coefficient vector. The objective of the procedure is

" to minimize the MSE (mean-square error),which in this case is a function not only of the weights, but also of the
- coefficients of the nonlinearity. At time index k we have:

e=(d-y)

- with d as the desired output and y as the output of the network:

y =f (a,net) = Zai net'
» . in0

where net is the output of the summation unit:
T
net=X W

; The minimization of MSE with the steepest-descent method, performed altering the weights and coefficients
vectors in the direction corresponding to the negative of the measured gradient:
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where 1) is the learning rate. In some cases, to optimize the convergence time, two different learning rates have been
used, one for weights and another one, smaller, for the polynomial coefficients. |

EXPERIMENTAL RESULTS hd

In order to estimate the performances of neural networks with an adaptive polynomial activation function with
respect to the radidonal MLPs, two problems available in literature are examinated. The first one is the example
number 4 proposed by Narendra and Parthasarathy [9 ] and even used by Specht [101, and concerns the identification
of a nonlinear system in the form: : |

y (kD) =f [y 00,y (- 1),y (k-2),u (), u (k- 1)) | S

where u and Y, indicate the input and output of the plant respectively, and f assumes the form:

X {X72X3Xg (X3 - l) + X4

2, .2
l+x2+x3

f %y X9 X3, X4, X511 =

Using first the network proposed in [9] made of 20 neurons in the first hidden layer and 10 neurons in the
second hidden layer, the system identification has been carried out for 100 times with an input pattern of 10,000
samples of noise uniformly distributed within the interval {-1.2, 1.2]. The procedure has been repeated for a network
with adaptive polynomial activation function, made of 30 neurons with a 4* degree polynomial and 1 output neuron
with a 2*¢ degree polynomial. This configuration has been chosen so that the two networks approximatively have »
the same amount of adaptive parameters. The typical course of the Mean Square Error (MSE) for the two networks
is shown in Fig. 3. : -
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Fig. 3. Course of MSE during the identification procedure.
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In a second time the procedure has been applied to other networks with several configurations and
consequently with a different number of adaptive parameters. The result is that, at a parity of performances, neural
networks with adaptive polynomial nonlinearity require a considerably smaller number of connections, as pointed
out before.

The second problem considered concerns pattern recognition, and it was chosen to investigate of the
generalization capabilities of networks built according to the proposed architecture. Ten 7x7 bits matrices,
representing digits from 0 to 9 are considered as input patterns. The desired output has been coded with 4 bits using
the Gray code. An APNN with a unique layer made of 4 neurons with a 3™ degree polynomial (p4g3) has been
compared with two sigmoidal MLPs with one hidden layer, made respectively of 4 neurons (s4_4) and 8 neurons
(s8_4), besides the 4 output neurons. The learning fase has been carried out for all the networks under examination
introducing a 5% average flipping of the bits in the input patterns (about 2 bits per character), and stopping the
training when the MSE has reached a previously fixed value. To perform the generalization phase, some input
patterns with a fixed amount of flipped bits, from 0 to 7, have becn used. :

The experimental results indicate on average a certain equivalence among the networks with regard to the
percentage of the correctly recognized characters (hit-rate), as shown in Fig. 4.
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Fig. 4. Average values of the hit-rates for
different classes of input sets.

Nevertheless, the variance of the hit-rates (see Fig. 5) show clearly that, for the case of APNNG, the values
of the single tests are considerably more grouped around the average value.
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Fig. 5. Variance of the resuiting hit-rates.

I — 347



CONCLUSIONS

APNNs have shown an excellent behavior on problems of pattern recognition and data processing. Their

results are comparable with those obtained by classical MLPs, but a significantly smaller amount of adaptive
parameters is needed. With respect to the known polynomial structures, for which a certain knowledge of the
characteristics of the discriminant function is required, APNNs don't need any particular a priori information.
Further studies will interestother kinds of adaptive nonlinearities, some applications of the powers-of-two technique
[61, {7], and an extension of the model using the complex back-propagation algorithm.
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