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Abstract 

In this paper a new blind deconvolution algorithm 
as modzjkation of the Bellini ‘s ‘Bussgang ’ is presented. 
Firstly, a novel version based on stochastic Gradient Steep- 
est Descent error minimization technique isproposed. Then 
the Bayesian estimator used by Bellini is approximated with 
a flexible Sigmoid’ parameterized with adjustable ampli- 
tude and slope, and a gradient-based technique is proposed 
to adapt such parameters in order to avoid their unsuitable 
choices. Experimental results are shown to assess the use- 
fulness of the new equalization method. 

1. Introduction 

Blind deconvolution [3, 8, 11, 12, 14, 161 concerns the 
problem of recovering a source signal s(t) distorted by a 
linear channel with impulse response 6, from observations 
of the channel output x (t ), without knowledge about i nor 
the statistics and the source’s temporal features. In the lin- 
ear model: 

x(t) = i*;(t) , (1) 

where s’(t) is a vector containing the input samples: 

s(t), s(t - l), s(t - 2) . . . , s(t - f + 1) ) 

with ! being the number of entries in i. 
A transversal filter described by its impulse response w’ 

is a channel equalizer if w’ cancels the effects of i on the 
source signal. Said Z(t) a vector containing the samples: 

x(t), x(t - l), x(t - a), . . . , x(t - m + 1) , 

where m is the number of tap-weights in 5, the output of 
the filter is: 

x(t) = GT(t)Z(t) . (2) 

Since i and s(t) are unknown, the equalizer & such that 
x(t) - s(t) has to be blindly found usually by means of an 
iterative algorithm [ 1,2,9]. 

When i is a non-minimum phase system, its inversion 
cannot be performed by means of an FIR filter, therefore 
every time an FIR equalizer is used an approximation error 
occurs [3,4,9]. Formally: 

x(t) = As(t - s> + n(t) , (3) 

where n(t) is the so-called deconvolution noise, A is a pos- 
sible amplitude factor and S is a finite delay. A suitable 
representation of n(t) is a gaussian random process [ 1, 91 
with variance denoted here with c2 (called ‘deconvolution 
noise power’). Notice that the same model for z(t) takes 
into account the ‘learning error’ due to the fact that during 
the whole adaptation phase 20’ # C&. 

Following the pioneering work of Sato [ 13, 171, several 
blind equalization algorithms have been proposed through 
years. One of the most known is that of Bellini [ 1, 2, 7,9], 
based on a memoryless Bayesian estimation i = g(x) of s 
by the knowledge of x and a pseudo-LMS adjustment of CY 
with the quantity e = g - x as error, with the hypothesis of 
i.i.d. source sequence. Since g(x) depends on g2, a problem 
relative to that algorithm is to estimate the deconvolution 
noise power in the best way. 

In this paper we propose a self-tuning procedure that al- 
lows to automatically determine optimal parameters of a 
flexible approximated estimator g(x), in connection with 
a different error-minimization algorithm based on Gradient 
Steepest Descent technique. Such a self-tuning behavior al- 
lows to overcome the problem of finding a suitable value 
of c2. Moreover, since parameters are continuously refined 
through time, suitable values are used during any learning 
phase. This avoids also the common problem of finding ap- 
propriate learning stepsizes. 

*This research was supported by the Italian MURST. Please send com- 
ments and suggestions to the first author. 

Finally, we show through simulations that such gradient- 
based self-tuning algorithm is effective, fast and accurate. 
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2. Gradient-based deconvolution with flexible If the above approximating expression is used, the gradi- 

estimator ent of U becomes: 

In [ 1,2, lo] an error criterion like: 

is proposed. The function g(x) provides an estimation of 
the source signal based on the Bayesian technique, so the 
deconvolving filter & minimizes 0. As a method to find 
iteratively the optimal filter given observations of the chan- 
nel output X, the pseudo-LMS criterion is used [ 1, 91. By 
interpreting the difference g(x) - x in (4) as an ‘error’, the 
structure of the algorithm proposed by Bellini is: 

A$= p[g(x) - x]Zwithz = W-*2, (5) 

where p is a positive learning stepsize. 
As already pointed out in [5, 61, there are no theoretical 

reasons to use the LMS procedure rather than other ones. 
So, the minimization of the cost function U, that is the in- 
stantaneous stochastic approximation of 0, can be attained 
also by means of a stochastic Gradient Steepest Descent 
(GSD) algorithm described by Azo’ CC - $$. In the present 
context this rule assumes the following expression: 

AtiT= -rlbW - l][g(z) - 212, (6) 

where 73 is a positive learning rate and g’(z) denotes the 
derivative of the function g (x) with respect to x. 

By comparing equations (5) and (6) one gathers they co- 
incide if in (5) the variable stepsize: 

is used. The meaning of a variable stepsize is that of a 
self-controlled adaptation rate which assumes large val- 
ues at the beginning of learning, and takes more and more 
smaller values as learning goes on, but that can take again 
large values when contour conditions change, e.g. when a 
channel commutation happens [8, 161. Its usefulness has 
been clearly explained recently in [5,6] and experimentally 
proved. 

The Bellini’s expression for g(x) is dependent upon the 
deconvolutionnoise power c2 [ 1,2,9]. The choice of a suit- 
able estimation for this parameter is quite difficult; more- 
over, an optimal value for cr2 probably does not exist since it 
should be changed through time accordingly with the adap- 
tation progress. Despite this, for a wide noise power spec- 
trum a suitable approximation of the Bellini’s g(x) seems to 
be [9] the bilateral sigmoid: 

d 1 x = a tanh(bz) , (7) 

with a and b properly chosen parameters. 

f$ = [ab - ig2(z) - l][g(z) - x]Z. 

In [9] a pair of values for a and b is obtained by fitting the 
expression (7) with the actual Bellini’s function. Anyway, 
it is clear that as an optimal constant value for g2 cannot be 
found, a suitable pair of constant parameters a and b cannot 
be fixed, too. 

In order to get rid of this drawback, we propose to adapt 
through time their values by means of a GSD algorithm ap- 
plied to U (thought as a function of a, b and z). In formulas 
we get: 

dU 
Aa = -aaa = -a(g - z)” , 

a (9) 

Ab P 
dU - -- -- - 
db 

-P(g - ,+a2 -g’,t 9 (10) 

where a and p are constant positive learning stepsizes. 

3. Refined criterion 

In our algorithm all parameters a, b and 20’ are changed 
at the same time by means of equations (6), (9) and (10). 
Because of the structure of U due to the expression (7), this 
fact implies that now the problem of minimizing U is ill- 
posed, because a simple way to minimize U is to vanish 
1 ]zZ] 1. To prevent such a behavior, it is possible to embed a 
simple constraint on the norm of $, that is: 

-+T -, w w-K2=0, (11) 

where ~~ is an arbitrarily chosen non-null constant that pro- 
vides an amplification of the filter output signal with a factor 
1~1. This condition can be taken into account by defining a 
new criterion J as: 

J” = 0 + x(ziT*ziT - K2) , (12) 

where X is called a Lagrange multiplier. Using again 
stochastic approximated cost functions, namely U instead 
of U and J instead of J, the optimum w’ may be found by: 

lYJ -- ~+2xw’ 0 - 
d2u’ - &ii - > 

with W’* w’ = yi2, therefore: 

+T dU dU 
W 

( > 
z + 2X?iTTG = GT 

( > 
dw’ + 2AK2 = 0. 

Hence the corresponding optimum X is: 

x - - - l)(g 4$ f 

(13) 
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where equation (8) has been used. 
If we still use the stochastic GSD algorithm LX = 

-q $$ to search for the minimum of J, we can replace the 
unconstrained rule (6) with: 

b 
AG = -#I - -g2 - l)(g - z)(i? - $Zf) . (14) a 

Equations (14), (9) and (10) give a new gradient-based blind 
equalization method with the flexible estimator (7). 

4. Experimental results 

In order to check the validity and performance of the new 
equalization algorithm, it has been simulated under the fol- 
lowing conditions: 

l as vector i we take the sampled impulse response of 
a typical non-minimum phase telephonic channel with 
e = 14 used in [4]; the bar-graph of i is shown in 
Figure 1; 

l as source signal a random process uniformly dis- 
tributed within [--A, a] has been taken, like that de- 
scribed in [l] to develop the Bellini’s theory; 

l as deconvolving structure a transversal filter with 
m = 21 taps as in [4] is used; 

l algorithm starts with G(O) which has all entries 
null except that the 10th one equal to 1, and with 
a=b=l. 

Running the new algorithm needs three ‘nominal’ learning 
stepsizes q, a and ,& We chose three values that experi- 
mentally prevent instability and provide fast convergence, 
namely 73 = 0.08, a! = 0.08 and ,0 = 0.08. As a filter 
output amplitude gain we chose 6 = 2. 

During the learning phase the behavior of the algorithm 
has been monitored by computing an error measure E ob- 
tained averaging function U over a small batch of 200 sam- 
ples of the input signal z(t) every epoch. In Figure 2 the 
error E expressed in dB is shown. Clearly the major part 
of learning happens within the first 250 epochs, then the 
refinement continues slowly. 

Figure 3 shows the bar graph of the learnt filter z.Z after 
500 epochs, normalized so that 1 IzZlI 2 = 1. It can be directly 
compared with the ‘exact’ inverse filter reported in [4]. 

After 500 epochs, sigmoid’s amplitude and slope have 
values: 

a = 1.1996, b = 0.8399. 

Any deconvolution problem needs a suitable approximated 
estimator to behave well. 

To appreciate the true equalization performanc_e, in Fig- 
ure 4 the convolution v’ of the channel response h and the 

- -0 

Figure 1. Sampled telephonic channel re- 
sponse 6. 

learnt deconvolving filter G is presented. Ideally a unique 
central bar there should appear, but the interference residu- 
als have a very low relative intensities, therefore equaliza- 
tion has been attained with a high degree of accuracy. The 
actual accuracy degree of the deconvolution can be quanti- 
tatively measured by means of the residual IS1 defined as in 

WI . . 

ISI = c i v” - VLax 

Y2 j (15) 
max 

where vmax is the component of v’ having the maximal ab- 
solute value. In Figure 5 the evolution of IS1 through 
learning is depicted. The value of 15’1 after 500 epochs 
is 0.0063. 

5. Discussion 

Several simulations with the new algorithm has been per- 
formed keeping fixed the conditions stated at the beginning 
of Section 4. Indeed, different values of learning stepsizes 
a, ,@, 1;1 and filter output amplitude gain K have been taken, 
in order to investigate on its stability properties. 

Firstly, a criterion without the normalization 
W’T$ = con&. has been considered, thus the adapta- 
tion rule with the gradient (8) has been used. As already 
mentioned above, such an algorithm reaches very low 
values of U due to the vanishing of I I z.Zl I: As the adaptation 
goes on, the learning terms in (8) become more and more 
smaller, therefore the correct iu’ cannot be achieved in a 
reasonable number of epochs. Coherently, the obtained 
algorithm is stable even for high learning stepsizes as, for 
instance, 1 O- ‘. 
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Figure 2. Averaged criterion E in dB. Figure 4. Convolution between i and &. 
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Figure 3. Learnt filter & after 500 epochs. 

To get rid of this drawback the normalization term 

W412 - K~) has been embedded in U. Due to its presence 
a new term appears on (8), namely the quantity -(z/K”)W’. 
Through simulations we found such term makes the system 
unstable for K = 1, except when very small stepsizes are 
used, for instance 10V4 or smaller. Naturally, this choice 
makes the algorithm too much slow in converging to the ex- 
pected equalizer w”;l. Clearly the simplest solution to this 
problem is weighting -xw’ with a suitable small number. 
The choice of K equal to some unit is very good, as can be 
seen in the previous Section, indeed it allows the system to 
be stable even when high stepsizes are used, as lo- ‘. 

(17) 

Another interesting observation is that in [5] an exact 
Bayesian estimator is established for binary sources, and 
its structure (see [5, eq. (lS)]) looks like (7) where output 
x appears squared. This tells that a function like (7) is not 
a ‘universal’ approximating one, and suggests that a better 
flexible function, as for instance: 

g(x) = a tanh() bnzn) 
n 

(18) 

About the cost function used in this paper, it is worth not- would be more effective and useful, understanding that co- 
ing that it has a very unusual structure. Indeed, expanding efficients a and bn should be adaptively changed. 

-0.2' I I 1 I 1 I I 
0 5 10 15 20 25 30 35 

function g(x) up to the third order gives: 

d > 
1 

x E abx - -ab3z3 . 
3 

Since near the equilibrium a b E 1, g (2) satisfies: 

therefore: 

0 cc b4E[z6] , 

that means near the equilibrium algorithm tries to minimize 
the sixth momentum of z under the constraint W’%i? = K~. 
This behavior provides a little improvement with respect 
to blind deconvolution algorithms which try to maximize 
fourth momenta only, like that approximately does (5) with 
estimator (7), that can be expressed as: 



OO 
1 I I I I I 1 I I 
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Figure 5. Inter-Symbol Interference (ISI) resid- 
ual. 

6. Conclusion 

In this paper a new blind equal ization method based on 
the Bellini’s Bayesian estimation technique is presented. 
We proposed to overcome the problem of the correct de- 
convolution noise power assumption, by introducing self- 
tuned parameters in a suitable approximation of the origi- 
nal estimator. Finally, we showed through simulations that 
the use of a gradient-based technique instead of the origi- 
nal pseudo-LMS together with self-tuning mechanism give 
a fast and accurate blind equalization algorithm. 
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