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ABSTRACT

A new second order algorithm based on Scaled
Conjugate Gradient for training recurrent and locally
recurrent neural networks is proposed. The algorithm is
able to extract second order information performing two
times the corresponding first order method. Therefore the
computational complexity is only about two times the
corresponding first order method. Simulation results show
a faster training with respect to the first order algorithm.
This second order algorithm is particularly useful for
tracking fast varying systems.

1   INTRODUCTION

Several learning algorithms for neural networks have
been proposed in the literature and many of them are based
on the well known gradient descend algorithm.

However, second-order algorithms [3,5,9,10] can
exhibit better performances than first order ones because
they also use the second-order information stored in the
Hessian matrix. There are several examples of these
algorithms in literature; a sub-class of them, based on the
conjugate gradient method, has shown good properties in
terms of rate of convergence and computational complexity
[9].

Conjugate direction methods are based on choosing
the search direction and the step size of a minimization
formula by using second order information. It holds
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where E(w) is a generic cost function, of weights w, to be
minimized, H w( )  is the Hessian matrix, and y the weight
variation.

The Conjugate Gradient (CG) algorithm is based on
the following two iterative formulas respectively for
updating weights w k  and conjugate directions pk [9]:
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where k is the iteration index and r wk kE= −∇ ( ) .

This algorithm has two drawbacks. The first is that for
each iteration the Hessian matrix H w( )k has to be
computed and stored [4]; the second one is that this
algorithm works only for functions with positive definite
Hessian matrices, and the quadratic approximations can be
very poor when the current point is far from a local
minimum.

M. Moller [10] has proposed a solution to the second
problem based on the Levenberg-Marquardt algorithm
combined with the conjugate gradient approach. The
problem of the Hessian matrix definition is solved trying to
make always positive the quantity in the denominator of
(1.2), adding a positive term, which is determined
recursively. This algorithm is called Scaled Conjugate
Gradient (SCG) [10] and results to be better than CG in
terms of convergence properties.
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With respect to the first problem some methods exist
to extract information on the Hessian matrix without
calculating or storing it.

From (1.2) we note that the algorithm needs to
calculate only the vector H w p( )k k , not the matrix

H w( )k  alone. Therefore, having an efficient technique to
obtain directly the product H w p( )k k  there is no need for
computing and storing the whole Hessian matrix.

For this reason, in this work a new method for
computing such product has been applied to SCG, obtaining
a computationally efficient algorithm, with good speed of
convergence but without the complexity and memory usage
typical of the second order methods already known in
literature.

The derived method has been applied to the difficult
problem of training recurrent neural networks in on-line
mode [2,6,7,8,12,1]. Several simulation results showing
faster training in non-linear system identification tests by
locally recurrent neural networks are reported for the on-
line case, comparing them with those obtained by several
first order algorithms.

The complexity of the proposed method is accurately
compared with that of the corresponding first order
algorithm showing an average increase of about 2 times in
terms of number of operations per iteration.

2 EXTRACTION OF SECOND ORDER
INFORMATION

A method exists [5] to perform the calculation of
H(w)p, where p is now the conjugate gradient and H the
Hessian matrix, as a difference between two gradients,
computed in two different points.

This technique has four main phases, that must be
performed every iteration (of index k):

1. compute  the gradient ∇w E ( )w  of  the cost function
with respect to the weights vector w ;

 
2. compute  u w w= − ∇ w E ( )  ;
 
3. compute  the gradient ( )∇u E u  of  the cost function

with respect to the vector u ;
 
4. compute the quantity

( )H w p w u( ) ( )= ∇ − ∇w uE E

as a difference between the two gradients calculated
before.

This technique is exact only if the cost function
E( )w is quadratic but in practice it gives an approximation
of the product H(w)p.

This technique results to be simple and efficient and
can be applied to any neural network (static or dynamic). It
allows exploiting the Hessian properties without explicitly
calculating it, and using only first order formulas. An
important advantage is when implementing it in software,
because it uses directly the same formulas of the gradient
calculation.

Must also be stressed that the previous technique have
never been applied to training neural networks by the SCG
algorithm, being implemented only for linear adaptive
filtering by CG. The SCG with the technique discussed
above gives a new algorithm which is faster than the first
order counterpart, as shown in the section on simulation
results.

After using this algorithm with some static problems,
with good performances, we have applied it to train locally
recurrent neural networks, as explained in the next section.

3 SCG-U ALGORITHM FOR IIR-MLP
NEURAL NETWORKS

With the same notation used in [6,7,8], let consider the
generic neuron k in the layer l of a IIR-MLP neural
network with inputs x, weights w and targets d, trained by
an epoch of T learning patterns. The vector of all the
weights of a whole IIR-MLP network is given by
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Therefore the generic element of conjugate direction,
because of its definition, will depend on index k, j and l ,
giving the following vector

~p
pw
pv= 





where
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As stated above, applying the previous technique to
calculate the products H w p( ~ )~ , we obtain a new algorithm
based on the conjugate gradient method. This algorithm
contain only first order formulas, i.e. gradient calculation.
A critical point is the use of an efficient gradient calculation
for locally recurrent networks; for this purpose we have
chosen the Truncated Recursive Back Propagation (TRBP)
[8] algorithm.

The products H w p( ~ ) ~  is calculated using the
following expression

( )H w p w u( ~ )~ ( ~ ) ~~ ~= ∇ − ∇w uE E

where     ~ ~ ( ~ )~u w w= − ∇ w E .

The ∇ ~ (~)u E u  computation is performed by applying
TRBP to a second network that has the same structure of
the first one, but with weights vector ~u  instead of ~w .
Therefore we have the same formulas of RBP, or TRBP,
but applied to a set of different variables that we call u-
variables.

Computational complexity and memory storage of the
SCG-u are about double with respect to TRBP algorithm,
because in practice we performed TRBP two times for each
iteration: firstly to calculate ∇ ~ ( ~ )w E w and then to calculate

( )∇ ~ ~
u E u .

The SCG-υ formulas are not reported, because they
are the same as for TRBP.

4 SIMULATION RESULTS

In this section, the results of applying the new SCG-u
algorithm to two problems of identification of non-linear
dynamic systems, reported in literature, are presented.

The locally recurrent architecture [12] chosen for the
simulations is the IIR-MLP with two layers: three hidden
neurons with hyperbolic tangent activation function and one
linear output neuron.

We compare SCG with the TRBP first-order on-line
algorithm. The results are given in terms of Mean-Square-
Error (MSE) expressed in dB, and its variance, computed
on the learning set after each epoch (after all the input-
output samples were presented) and averaged over 20 runs,
each with a different weights initialization.

The first set of experiments consists in identifying the
non-linear system with memory presented in [2]. The

network used has both MA and AR order equal to three for
each neuron. From Fig. 1 is clear that the new SCG
algorithm has good performances.

The second set of experiments was carried out on the
more realistic problem of identifying a baseband equivalent
Pulse Amplitude Modulation (PAM) transmission system in
presence of non linearity, see [6,7] for details. The network
used in this case has MA and AR order respectly equal to
four and two for each neuron. Fig. 2 shows that the new
SCG algorithm performs very well.

The second-order algorithm seems to perform better
than first-order ones. Moreover the complexity of SCG
algorithm, in terms of number of floating point operations
(flop) per iteration, is only about 2 times higher with
respect to TRBP, as shown in Tab. 1. This is an important
result since other second-order algorithms already
presented in literature have in general a much higher
complexity.
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Fig. 1 Back-Tsoi test results in on-line mode, using SCG-u (h,h’) and TRBP(h,h’). h is the past history
length considered and h’ is every how many samples parameters are adapted.
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Fig. 2 PAM test results in on-line mode, using SCG-u (h,h’) and TRBP(h,h’).

Back-Tsoi
(1000 samples)

P.A.M.
(2048 samples)

TRBP(10,10) 1.852e+006 2.692e+006

SCG- u (10,10) 3.534e+006 5.065e+006

Tab. 1 Computational complexity on the Back-Tsoi  and P.A.M. (on-line mode) tests - number of flops per
iteration.




